1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: NON-FLAMMABLE GAS MIXTURE

Containing One or More of the Following Components in a Nitrogen Balance Gas:

- Oxygen, 0.0015-23.5%;
- Propane, 0-1.1%;
- n-Pentane, 0-0.75%;
- n-Hexane; 0-0.48%;
- Carbon Monoxide, 0.0005-1.0%;
- Hydrogen Sulfide, 0.001-0.025%

SYNONYMS: Not Applicable

CHEMICAL FAMILY NAME: Not Applicable

FORMULA: Not Applicable

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>TWA</th>
<th>STEL</th>
<th>TWA</th>
<th>STEL</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>7782-44-7</td>
<td>0.0015</td>
<td>2500</td>
<td>NE</td>
<td>1000</td>
<td>NE</td>
<td>2100</td>
<td>NE</td>
</tr>
<tr>
<td>Propane</td>
<td>74-98-6</td>
<td>0 - 1.1%</td>
<td>600</td>
<td>750</td>
<td>750</td>
<td>(Vacated 1989 PEL)</td>
<td>1500</td>
<td>NE</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>109-66-0</td>
<td>0 - 0.75%</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>(Vacated 1989 PEL)</td>
<td>NE</td>
<td>1100</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>110-54-3</td>
<td>0 - 0.48%</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(Vacated 1989 PEL)</td>
<td>10</td>
<td>NE</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>630-06-0</td>
<td>0.0005</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>(Vacated 1989 PEL)</td>
<td>1200</td>
<td>NE</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7727-37-9</td>
<td>Balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NE = Not Established. NIC = Notice of Intended Change

NOTE: ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This gas mixture has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.
EMERGENCY OVERVIEW: This gas mixture is a colorless gas which has a rotten-egg odor (due to the presence of Hydrogen Sulfide). The odor cannot be relied on as an adequate warning of the presence of this gas mixture, because olfactory fatigue occurs after over-exposure to Hydrogen Sulfide. Hydrogen Sulfide and Carbon Monoxide (another component of this gas mixture) are toxic to humans in relatively low concentrations. Over-exposure to this gas mixture can cause skin or eye burns, nausea, dizziness, headaches, collapse, unconsciousness, coma, and death. Those exposed, n-Pentane, and n-Hexane components can cause anesthetic or peripheral neuropathy effects. Additionally, releases of this gas mixture may produce oxygen-deficient atmospheres (especially in small confined spaces or other poorly-ventilated environments); individuals in such atmospheres may be asphyxiated.

SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE: The most significant route of exposure for this gas mixture is by inhalation.

INHALATION: For persons of average size who breathe air containing 10-14% Oxygen: Emotional upset, abnormal fatigue, disturbed respiration. For persons of average size who breathe air containing 6-10% Oxygen: Nausea, vomiting, collapse, or loss of consciousness.

NOTE: This gas mixture contains a maximum of 250 ppm Hydrogen Sulfide. The higher concentration values here are presented to delineate the complete health effects which have been observed for humans after exposure to Hydrogen Sulfide. Inhalation over-exposures to atmospheres containing more than the Threshold Limit Value of Carbon Monoxide (25 ppm), another component of this gas mixture, can result in serious health consequences. Carbon Monoxide is classified as a chemical asphyxiant, producing a toxic action by combining with the hemoglobin of the blood and replacing the available oxygen. Such over-exposures may occur if the gas mixture is used in a confined space or other poorly-ventilated area. Over-exposures to Hydrogen Sulfide can cause dizziness, headache, and nausea. Exposures to this component can result in respiratory arrest, coma, or unconsciousness. Continuous inhalation of low concentrations of Hydrogen Sulfide may cause olfactory fatigue, so that the odor is no longer an effective warning of the presence of this gas. A summary of exposure concentrations and observed effects are as follows:

CONCENTRATION OF HYDROGEN SULFIDE OBSERVED EFFECT
0.3-3.0 ppm Odor is obvious and unpleasant.
50 ppm Eye irritation. Dryness and irritation of nose, throat.
Slightly higher than 50 ppm Irritation of the respiratory system.
100-150 ppm Temporary loss of smell.
200-250 ppm Headache, vomiting nausea. Prolonged exposure may lead to lung damage. Exposures of 4-8 hours can be fatal.
300-500 Swifter onset of symptoms. Death occurs in 1-4 hours.
500 ppm Headache, excitement, staggering, and stomach ache after brief exposure. Death occurs within 0.5 - 1 hour of exposure.
> 600 ppm Rapid onset of unconsciousness, coma, death.
> 1000 ppm Immediate respiratory arrest.

CONCENTRATION OF CARBON MONOXIDE OBSERVED EFFECT
All exposure levels:...
200 ppm Slight symptoms (i.e. headache) after several hours of exposure.
400 ppm: Headache and discomfort experienced within 2-3 hours of exposure.
1,000 -2000 ppm: Within 30 minutes, slight palpitations of the heart occurs. Within 1.5 hours, there is a tendency to staggers.
200-2500 ppm: Within 2 hours, there is mental confusion, headaches, and nausea. Unconsciousness within 30 minutes.
> 2500 ppm: Potential for collapse and death before warning symptoms.

Another hazard associated with this gas mixture is the potential for anesthetic and peripheral neuropathy effects after inhalation over-exposures to the Propane, n-Pentane and n-Hexane components of this gas mixture. Specific human over-exposure data are available for n-Pentane and n-Hexane, as follows:

CONCENTRATION OF n-PENTANE OBSERVED EFFECT
Brief (10 minute) up to 5,000 ppm: Fully conscious. Long-term: Can affect the nerves in the arms and legs. Effects include numbness or tingling sensations in the fingers and toes, tiredness, muscle weakness, cramps and spasms in the legs, difficulty in holding objects or walking, abdominal pains, loss of appetite, weight loss. More serious exposures can cause damage to the nerves in the hands and feet (peripheral neuropathy).

CONCENTRATION OF n-HEXANE OBSERVED EFFECT
Brief (1 minute) at 1,500 ppm: 5000 ppm: Long-term at 500 ppm:

Blood Cells: Additionally, if mixtures of this gas mixture contain less than 19.5% Oxygen and are released in a small, poorly ventilated area (i.e. an enclosed or confined space), they may present an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. Under some circumstances of over-exposure, death may occur. The following effects associated with various levels of oxygen are as follows:

CONCENTRATION OF OXYGEN OBSERVED EFFECT
12-16% Oxygen: Breathing and pulse rate increased, muscular coordination slightly disturbed.
10-14% Oxygen: Emotional upset, abnormal fatigue, disturbed respiration.
6-10% Oxygen: Convulsive movements, possible respiratory collapse, and death.

SKIN AND EYE CONTACT: The Hydrogen Sulfide component of this gas mixture may irritate the skin. Inflammation and irritation of the eyes (conjunctivitis) can occur. In very low airborne concentration of Hydrogen Sulfide (less than 10 ppm). Exposure over several hours may result in "eye sores" with symptoms of scratchiness, irritation, tearing and burning. Above 50 ppm of Hydrogen Sulfide, there is an intense tearing, blurring of vision, and pain when looking at light. Over-exposed individuals may see rings around bright lights. Most symptoms disappear when exposure ceases. However, in serious cases, the eyes can be permanently damaged.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms. Over-exposure to this gas mixture may cause the following health effects:

ACUTE: Due to the small size of the individual cylinder of this gas mixture, no unusual health effects from exposure to the product are anticipated under routine circumstances of use. However, the Hydrogen Sulfide and Carbon Monoxide components of this gas mixture are toxic to humans. Over-exposure to this gas mixture can cause nausea, dizziness, headaches, collapse, unconsciousness, coma, and death. Due to the presence of Hydrogen Sulfide, over-exposures to this gas mixture can also irritate the skin and eyes; severe eye contamination can result in blindness. Inhalation over-exposures to Propane, n-Pentane, and n-Hexane can cause anesthetic effects and motor neuropathy (i.e. pain and tingling in feet and hands).

Hazardous Material Identification System

Health Hazard (BLUE): 3
Flammability Hazard (RED): 0
Physical Hazard (YELLOW): 0

Protective Equipment

EYES: Respiratory: Hands: Body:

See Section 8

For Routine Industrial Use and Handling Applications
4. FIRST-AID MEASURES

RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF EXPOSURE TO THIS GAS MIXTURE WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus must be worn. No unusual health effects are anticipated after exposure to this gas mixture, due to the small cylinder size. If any adverse symptoms develop after over-exposure to this gas mixture, remove victim(s) to fresh air as quickly as possible. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation if necessary. Victims who experience any adverse effects after over-exposure to this gas mixture must be taken for medical attention. Rescue should be taken for medical attention if necessary. Take a copy of the label and the MSDS to physician or other health professional with victim(s).

SKIN EXPOSURE: If irritation of the skin develops after exposure to this gas mixture, immediately begin decontamination with running water. Minimum flushing is for 15 minutes. Remove exposed or contaminated clothing, taking care not to contaminate eyes. Victim must seek immediate medical attention.

EYE EXPOSURE: If irritation of the eye develops after exposure to this gas mixture, open victim's eyes while under gentle running water. Use sufficient force to open eyelids. Have victim "roll" eyes. Minimum flushing is for 15 minutes. Seek medical assistance immediately, preferably an ophthalmologist.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by over-exposure to this gas mixture. Carbon Monoxide, a component of this gas mixture, can aggravate some diseases of the cardiovascular system, such as coronary artery disease and angina pectoris. Because of the presence of Hydrogen Sulfide, n-Hexane or n-Pentane in this gas mixture, cardiovascular nervous system conditions, eye disorders, or skin problems may be aggravated by over-exposure to this gas mixture.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and eliminate over-exposure. Hyperbaric oxygen is the most efficient antidote to Carbon Monoxide poisoning, the optimum range being 2.2-5 atm. A special mask, or, preferably, a compression chamber to utilize oxygen at these pressures is required. Avoid administering stimulant drugs. Be observant for initial signs of pulmonary edema in the event of severe inhalation over-exposures.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Not applicable. AUTOIGNITION TEMPERATURE: Not applicable. FLAMMABLE LIMITS (in air by volume, %): Lower (LEL) Not applicable. Upper (UEL) Not applicable.

FIRE EXTINGUISHING MATERIALS: Non-flammable gas mixture. Use extinguishing media appropriate for surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: This gas mixture contains toxic gases, Hydrogen Sulfide, Carbon Monoxide, and presents an extreme health hazard to firefighters. This gas mixture is not flammable; however, contains, when involved in fire, may rupture or burst in the heat of the fire.

SPECIAL FIRE-FIGHTING PROCEDURES: Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment.

6. ACCIDENTAL RELEASE MEASURES

LEAK RESPONSE: Due to the small size and content of the cylinder, an accidental release of this gas mixture presents significantly less risk of over-exposure to Hydrogen Sulfide and Carbon Monoxide, the toxic components of this gas mixture, and other safety hazards related to the remaining components of this gas mixture, than a similar release from a larger cylinder. However, as with any chemical release, extreme caution must be used during emergency response procedures. In the event of a release in which the atmosphere is unknown, and in which other chemicals are present, obtain aid as quickly as possible. Such releases should be handled as for emergency response to this gas mixture, using equipment designed for specific cylinders. Ensure all lines and equipment are rated for proper service pressure. Proper protective equipment should be used. In case of a leak, clear the affected area, protect people, and respond with trained personnel.

For emergency disposal, secure the cylinder and slowly discharge the gas to the atmosphere in a well-ventilated area or outdoors. Allow the gas mixture to dissipate. If necessary, monitor the surrounding area (and the original area of the release) for Hydrogen Sulfide, Carbon Monoxide, and Oxygen. Hydrogen Sulfide and Carbon Monoxide level must be below exposure levels listed in Section 2 (Composition and Information on Ingredients) and Oxygen levels must be above 19.5% before non-emergency personnel are allowed to re-enter area.

If leaking incidentally from the cylinder, contact your supplier.

7. HANDLING AND USE

WORK PRACTICES AND HYGIENE PRACTICES: Be aware of any signs of dizziness or fatigue, exposures to fatal concentrations of this gas mixture could occur without any significant warning symptoms, due to olfactory fatigue or oxygen deficiency. Do not attempt to repair, adjust, or in any other way modify cylinders containing a gas mixture with Hydrogen Sulfide or Carbon Monoxide. If there is a malfunction or another type of operational problem, contact nearest distributor immediately. Eye wash stations/safety showers should be near areas where this gas mixture is used or stored. All work operations should be conducted in a manner that allows for immediate contact in the event of a release. All work practices should minimize releases of Hydrogen Sulfide and Carbon Monoxide-containing gas mixtures.

STORAGE AND HANDLING PRACTICES: Cylinders should be firmly secured to prevent falling or being knocked-over. Cylinders must be protected from the environment, and preferably kept at room temperature (approximately 21 C, 70 F). Cylinders should be stored in dry, well-ventilated areas, away from sources of heat, ignition, and direct sunlight. Protect cylinders against physical damage. Full and empty cylinders should be segregated. Use a first-in, first-out inventory system to prevent full containers from being stored for long periods of time. These cylinders are not refillable. WARNING! Do not refill NON REFILLABLE cylinders. To do so may cause personal injury or property damage.

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: WARNING! Compressed gases can present significant safety hazards. During cylinder use, use equipment designed for these specific cylinders. Ensure all lines and equipment are rated for proper service pressure. PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely. Always use product in areas where adequate ventilation is provided.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: No special ventilation systems or engineering controls are needed under normal circumstances of use. As with all chemicals, use this gas mixture in well-ventilated areas. If this gas mixture is used in a poorly-ventilated area, install automatic monitoring equipment to detect the levels of Oxygen, Hydrogen Sulfide, and Carbon Monoxide.

RESPIRATORY PROTECTION: No specific respiratory protection is required under normal circumstances of use. Use supplied air respiratory protection if Carbon Monoxide levels exceed the exposure levels given in Section 2 (Composition and Information on Ingredients) or if Oxygen levels are below 19.5%, or if either level is unknown during emergency response to a release of this gas mixture. If respiratory protection is required for emergency response to this gas mixture, follow the requirements of the Federal OSHA Respiratory Protection Standard (29 CFR 1910.134) or equivalent State standards. The following NIOSH respiratory protection recommendations for Hydrogen Sulfide and Carbon Monoxide are provided for further information.

NON-FLAMMABLE GAS MIXTURE MSDS - 50016 EFFECTIVE DATE: JANUARY 05, 2012 PN3588 PAGE 3 OF 6
8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

NIOSH/OSHA RECOMMENDATIONS FOR CARBON MONOXIDE CONCENTRATIONS IN AIR:
Up to 100 ppm: Powered air-purifying respirator with cartridge(s) to protect against hydrogen sulfide; or gas mask with canister to protect against hydrogen sulfide; or SAR; or full-facepiece SCBA.
Emergency or Planned Entry into Unknown Concentration or IDLH Conditions: Positive pressure, full-facepiece SCBA; or positive pressure, full-facepiece SAR with an auxiliary positive pressure SCBA.
Escape: Gas mask with canister to protect against hydrogen sulfide; or escape-type SCBA
NOTE: The IDLH concentration for Hydrogen Sulfide is 100 ppm.

NIOSH/OSHA RECOMMENDATIONS FOR CARBON MONOXIDE CONCENTRATIONS IN AIR:
Up to 350 ppm: Supplied Air Respirator (SAR).
Up to 875 ppm: Supplied Air Respirator (SAR) operated in a continuous flow mode.
Up to 1200 ppm: Gas mask with canister to protect against carbon monoxide; or full-facepiece SCBA; or full-facepiece Supplied Air Respirator (SAR).
Emergency or Planned Entry into Unknown Concentration or IDLH Conditions: Positive pressure, full-facepiece SCBA; or positive pressure, full-facepiece Supplied Air Respirator (SAR).
Escape: Gas mask with canister to protect against carbon monoxide; or escape-type SCBA.
NOTE: End of Service Life Indicator (ESLI) required for gas masks.

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is for the gas mixture.
GAS DENSITY @ 32°F (0 C) and 1 atm: 0.072 lb/ft³ (1.153 kg/m³)
FREEZING/ MELTING POINT @ 10 psig: -210.0°F (-345.8°C)
SPECIFIC ENERGY (air = 1) @ 70°F (21.1°C): 0.906
SOLUBILITY IN WATER @ vol/vol @ 32°F (0 C) and 1 atm: 0.023
EVAPORATION RATE (nBuAc = 1): Not applicable.
ODOR THRESHOLD: Not applicable.
VAPOR PRESSURE @ 70°F (21.1°C) psig: Not applicable.
COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.

The following information is for the gas mixture.
TCLo (inhalation, rat) = 8 ppm/1 hour
TCLo (inhalation, mammal) = 8 ppm/1 hour

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is for Nitrogen, the main component of this gas mixture.
GAS DENSITY @ 32°F (0 C) and 1 atm: 0.072 lb/ft³ (1.153 kg/m³)
FREEZING/ MELTING POINT @ 10 psig: -210.0°F (-345.8°C)
SPECIFIC ENERGY (air = 1) @ 70°F (21.1°C): 0.906
SOLUBILITY IN WATER @ vol/vol @ 32°F (0 C) and 1 atm: 0.023
EVAPORATION RATE (nBuAc = 1): Not applicable.
ODOR THRESHOLD: Not applicable.
VAPOR PRESSURE @ 70°F (21.1°C) psig: Not applicable.
COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.

The following information is for the gas mixture.
TCLo (inhalation, man) = 400 ppm/30 minutes
TCLo (inhalation, man) = 600 ppm/45 minutes; central nervous system and blood system effects.
TCLo (inhalation, man) = 5000 ppm/5 minutes
TCLo (inhalation, dog) = 400 ppm/46 minutes
TCLo (inhalation, rabbit) = 4000 ppm
TCLo (inhalation, rat) = 1811 ppm/4 hours
TCLo (inhalation, guinea pig) = 2450 ppm/4 hours
TCLo (inhalation, guinea pig) = 5718 ppm/4 hours
TCLo (inhalation, mammal) = 5000 ppm/5 minutes
TCLo (inhalation, wild bird) = 1334 ppm
TCLo (inhalation, human) = 600 ppm/30 minutes

10. STABILITY and REACTIVITY

STABILITY: Normally stable in gaseous state.
DECOMPOSITION PRODUCTS: The thermal decomposition products of Propane, n-Hexane, and n-Pentane include carbon oxides. The decomposition products of Hydrogen Sulfide include water and sulfur oxides. The other components of this gas mixture do not decompose, per se, but can react with other compounds in the heat of a fire.
MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Titanium will burn in Nitrogen (the main component of this gas mixture). Lithium reacts slowly with Nitrogen at ambient temperatures. Components of this gas mixture (Hydrogen Sulfide, Propane, n-Pentane, n-Hexane) are also incompatible with strong oxidizers (i.e. chlorine, bromine pentfluoride, oxygen, oxygen difluoride, and nitrogen trifluoride). Carbon Monoxide is mildly corrosive to nickel and iron (especially at high temperatures and pressures). Hydrogen Sulfide is corrosive to most metals, because it reacts with these substances to form metal sulfides.
Hazardous POLYMORIZATION: Will not occur.
CONDITIONS TO AVOID: Contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: The following toxicity data are available for the components of this gas mixture:

NITROGEN: There are no specific toxicity data for Nitrogen. Nitrogen is a simple asphyxiant, which acts to displace oxygen in the body.
n-PENTANE:

LD₅₀ (intravenous, mouse) = 446 mg/kg.
LD₅₀ (inhalation, rat) = 364 mg/litre/3 hours.
LCLo (inhalation, rat) = 329 mg/litre/2 hours.

n-Hexane:

Eye: rabbit: 10 mg/ml; mild
TCLo (inhalation, rat) = 10.000 ppm/7 hours.
TCLo (inhalation, rat) = 5000 ppm/20 hours; teratogenic effects.
LD₅₀ (oral, rat) = 28710 mg/kg.
LD₅₀ (intraperitoneal, rat) = 9100 mg/kg.
LC₅₀ (inhalation, mouse) = 120,000 mg/Kg.
ACUTE INHALATION (mouse): 30,000 ppm, narcosis within 30 to 60 minutes; 35,000-40,000 ppm, convulsions and death.
DERMAL (rabbit): 2 to 5 ml/kg for 4 hours resulted in restlessness and discoordination; death occurred at 5 ml/kg.

HYDROGEN SULFIDE:

LC₅₀ (inhalation, human) = 600 ppm/30 minutes.
LD₅₀ (inhalation, man) = 5.7 mg/kg; central nervous system, pulmonary effects.

Suspected cancer agent: The components of this gas mixture are not found on the following lists: FEDERAL OSHA Z LIST, NTP, CARCINOGENS LIST, APEI, IARC; therefore, they are not considered to be, nor suspected to be, cancer-causing agents by these agencies.

Reproductive toxicity information: Listed below is information concerning the effects of this gas mixture on the human reproductive system.

Mutagenicity: No mutagenicity effects have been described for the components of this gas mixture.
Embryotoxicity: This gas mixture contains components that may cause embryotoxic effects in humans; however, due to the small total amount of the components, embryotoxic effects are not expected to occur.
Teratogenicity: This gas mixture is not expected to cause teratogenic effects in humans due to the small cylinder size and small total amount of all components. The Carbon Monoxide component of this gas mixture which exists up to 1%, can cause teratogenic effects in humans. Severe

NON-FLAMMABLE GAS MIXTURE MSDS - 50016
PN3588
PAGE 4 OF 6

EFFECTIVE DATE: JANUARY 05, 2015
exposure to Carbon Monoxide during pregnancy has caused adverse effects and the death of the fetus. In general, maternal symptoms are an indicator of the potential risk to the fetus since Carbon Monoxide is toxic to the mother before it is toxic to the fetus. Reproductive Toxicity: The components of this gas mixture are not expected to cause adverse reproductive effects in humans. A mutagen is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. An embryo-toxicant is a chemical which causes damage to a developing embryo (i.e. within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A teratogen is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A reproductive toxin is any substance which interferes in any way with the reproductive process.

BIOLOGICAL EXPOSURE INDICES (BEIs): Biological Exposure Indices (BEIs) have been determined for the components of this gas mixture, as follows:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

11. TOXICOLOGICAL INFORMATION (continued)

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: The gas will be dissipated rapidly in well-ventilated areas. The following environmental data are applicable to the components of this gas mixture.

OXYGEN: Water Solubility = 1 volume Oxygen/32 volumes water at 20 °C. Log Kow = 0.65

PENTANE: Log Kow = 3.39. Water Solubility = 38.5 mg/L. Log BCF (n-pentane) = calculated, 1.90 and 2.35, respectively. Photolysis, hydrolysis, and bioconcentration are not anticipated to be important fate processes. Biodegradation and soil adsorption are anticipated to be more important processes for this compound.

n-HEXANE: Log Kow = 3.90-4.11. Water Solubility = 9.5 mg/L. Estimated Bioconcentration Factor =2.24 and 2.89. Bioconcentration in aquatic organisms is low. Hexane is volatile. Rapid volatilization from water and soil is anticipated for this compound. Hexane will float in slick on surface of the water.

HYDROGEN SULFIDE: Water Solubility = 1 g/242 mL at 20°C.

CARBON MONOXIDE: Water solubility = 3.3 ml/100 cc at 0 °C, 2.3 ml at 20 °C.

NITROGEN: Water Solubility = 2.4 volumes Nitrogen/100 volumes water at 0 °C; 1.6 volumes Nitrogen/100 volumes water at 20 °C.

EFFECT OF MATERIAL ON PLANTS OR ANIMALS: No evidence is currently available on this gas mixture’s effects on plant and animal life. The Hydrogen Sulfide and Carbon Monoxide components of this gas mixture, can be deadly to exposed animal life, producing symptoms similar to those experienced by humans. This gas mixture may also be harmful to plant life.

EFFECT OF CHEMICAL ON AQUATIC LIFE: No evidence is currently available on the effects of this gas effects on aquatic life. The presence of more than a trace of Carbon Monoxide is a hazard to fish. The following aquatic toxicity data are available for the Hydrogen Sulfide component of this gas mixture.

TLm (Asellus) = 0.111 mg/L/96 hour
TLm (Crainfongy sp) = 1.07 mg/L/96 hour
TLm (Gammarrus) = 0.84 mg/L/96 hour
TLm (Cranfgonyx sp) = 1.07 mg/L/96 hour
TLm (Asellussp) = 0.111 mg/L/96 hour
TLm (Lepomis macrochirus, bluegill sunfish) = 0.0448 mg/L/96 hour at 21-22 °C
TLm (Pimephales promelas, fathead minnow) = 0.0071-0.55 mg/L/96 hour
TLm (Salvennalis foninalis, brock trout) = 0.0216-0.038 mg/L/96 hour at 8-12.5 °C

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate regulations of Transport Canada.

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate regulations of Transport Canada.

14. TRANSPORTATION INFORMATION

THIS GAS MIXTURE IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

PROPER SHIPPING NAME: Compressed gases, n.o.s. (*Oxygen, Nitrogen)*or the gas component with the next highest concentration next to Nitrogen.

HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)

UN IDENTIFICATION NUMBER: UN 1956

PACKING GROUP: Not Applicable

DOT LABEL(S) REQUIRED: Class 2.2 (Non-Flammable Gas)

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 126

MARINE POLLUTANT: The components of this gas mixture are not classified by the DOT as Marine Pollutants (as defined by 49 CFR 172.101, Appendix B).

SPECIAL SHIPPING INFORMATION: Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles can present serious safety hazards. If transporting these cylinders in compressed gas cylinders in automobiles or in closed-body vehicles can present serious safety hazards. If transporting these cylinders in

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas is considered as Dangerous Goods, per regulations of Transport Canada.

PROPER SHIPPING NAME: Compressed gases, n.o.s. (*Oxygen, Nitrogen)*or the gas component with the next highest concentration next to Nitrogen.

HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)

UN IDENTIFICATION NUMBER: UN 1956

PACKING GROUP: Not Applicable

HAZARD LABEL: Class 2.2 (Non-Flammable Gas)

EXPLOSIVE LIMIT AND LIMITED QUANTITY INDEX: None

ERAP INDEX: None

PAASSENGER CARRYING ROAD VEHICLE OR PASSENGER CARRYING RAILWAY VEHICLE INDEX: 75

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 126

NOTE: Shipment of compressed gas cylinders via Public Passenger Road Vehicle is a violation of Canadian law (Transport Canada Transportation of Dangerous Goods Act, 1992).

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS: U.S. SARA REPORTING REQUIREMENTS: This gas is not subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act, as follows:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
15. REGULATORY INFORMATION (continued)

U.S. SARA THRESHOLD PLANNING QUANTITY: Section 302 EHS TPU = Hydrogen Sulfide = 500 lbs (227 kg).

U.S. TSCA INVENTORY STATUS: The components of this gas mixture are listed on the TSCA Inventory.

U.S. CERCLA REPORTABLE QUANTITY (RQ): Hexane = 5000 lb (2270 kg); Hydrogen Sulfide = 100 lbs (45.4 lb).

OTHER U.S. FEDERAL REGULATIONS:
- Hydrogen Sulfide, Carbon Monoxide, Propane, n-Pentane and n-Hexane are subject to the reporting requirements of CFR 29 1910.1000.
- Hydrogen Sulfide, Propane and n-Pentane are subject to the reporting requirements of Section 112(e) of the Clean Air Act. The Threshold Quantity for each of these gases is 10,000 pounds and so this mixture will not be affected by the regulation.
- Depending on specific operations involving the use of this gas mixture, the regulations of the Process Safety Management of Highly Hazardous Chemicals may be applicable (29 CFR 1910.119). Hydrogen Sulfide is listed in Appendix A of this regulation. The Threshold Quantity for Hydrogen Sulfide under this regulation is 1500 lbs.
- This gas mixture does not contain any Class I or Class II ozone depleting chemicals (40 CFR part 82).
- Nitrogen, Oxygen and n-Hexane are not listed Regulated Substances, per 40 CFR, Part 68, of the Risk Management for Chemical Releases. Hydrogen Sulfide is listed under this regulation in Table 1 as a Regulated Substance (Toxic Substance), in quantities of 10,000 lbs (4,553 kg) or greater. Carbon Monoxide, Propane and n-Pentane are listed under this regulation in Table 3, as Regulated Substances (Flammable), in quantities of 10,000 lbs (4,553 kg) or greater, and so this mixture will not be affected by the regulation.

U.S. STATE REGULATORY INFORMATION:
- The components of this gas mixture are covered under the following specific State regulations:
 - **Alaska**: Designated Toxic and Hazardous Substances: Carbon Monoxide, Propane, n-Pentane, n-Hexane, Hydrogen Sulfide.
 - **California**: Permissible Exposure Limits for Chemical Contaminants: Carbon Monoxide, Nitrogen, Propane, n-Pentane, n-Hexane, Hydrogen Sulfide.
 - **Florida**: Substance List: Oxygen, Carbon Monoxide, n-Pentane, n-Hexane, Hydrogen Sulfide.
 - **Illinois**: Toxic Substance List: Carbon Monoxide, Propane, n-Pentane, n-Hexane, Hydrogen Sulfide.
 - **Kansas**: Section 302/313 List: No.
 - **Massachusetts**: Substance List: Oxygen, Carbon Monoxide, Propane, n-Pentane, n-Hexane, Hydrogen Sulfide.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): The Carbon Monoxide component of this gas mixture is on the California Proposition 65 lists as a chemical known to the State of California to cause birth defects or other reproductive harm.

ADDITIONAL CANADIAN REGULATIONS:
- **CANADIAN DSL/NDL INVENTORY STATUS:** The components of this gas mixture are on the Canadian DSL Inventory.
- **CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS:** The components of this gas mixture are not on the CEPA Priorities Substances List.
- **CANADIAN WHMIS CLASSIFICATION:** This gas mixture is categorized as a Controlled Product, Hazard Classes A and D2A, as per the Controlled Product Regulations.

16. OTHER INFORMATION

INFORMATION ABOUT NON-REFILLABLE CYLINDER PRODUCTS

Non-Refillable cylinders ship as hazardous materials when full. Once the cylinders are relieved of pressure (empty) they are not considered hazardous material or waste. Residual gas in this type of cylinder is not an issue because toxic gas mixtures are prohibited. Calibration gas mixtures and liquefied gases are non-hazardous when in these cylinders that are non-refillable n.o.s., UN 1956. A small percentage of calibration gases packaged in Non-Refillable cylinders are flammable or oxidizing gas mixtures.

For disposal of unused Non-Refillable cylinders, it is acceptable to place them in a landfill if local laws permit. Their disposal is no different than that employed with other Non-Refillable containers such as spray paint cans, household aerosols, or disposable cylinders of propane (for camping, torch etc.). When feasible, we recommended recycling for scrap metal content. CALGAZ will do this for any customer that wishes to return cylinders to us prepared. All that is required is a phone call to make arrangements so we may anticipate arrival. Scraping cylinders involves some preparation before the metal dealer may accept them. We perform this operation as a service to valued customers who want to participate.

MIXTURES: When two or more gases or liquefied gases are mixed, their hazardous properties may combine to create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture. Consult an Industrial Hygienist or other trained person when you make your safety evaluation of the end product. Remember, gases and liquids have properties which can cause serious injury or death.

Further information about the handling of compressed gases can be found in the following pamphlets published by: Compressed Gas Association Inc. (CGA), 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202-4102. Telephone: (703) 412-0900.

P-1
- “Safe Handling of Compressed Gases in Containers”
- “Safe Handling and Storage of Compressed Gases”
- “Handbook of Compressed Gases”

This Material Safety Data Sheet is offered pursuant to OSHA’s Hazard Communication Standard, 29 CFR, 1910.1200. Other government regulations must be reviewed for applicability to this gas mixture. To the best of CALGAZ knowledge, the information contained herein is reliable and accurate as of this date; however, accuracy, suitability or completeness are not guaranteed and no warranties of any type, either express or implied, are provided. The information contained herein relates only to this specific product. If this gas mixture is combined with other materials, all component properties must be considered. Data may be changed from time to time. Be sure to consult the latest edition.